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Some Uses of Artificial Neural Networks

* Face recognition * Fault tracing & diagnosis
* Speech recognition * Sensor interpretation
 Handwriting recognition * QC manufacturing

* Autonomous vehicles * Process control

e Stock markets * Medical tests

* Targeted marketing * Chemical analysis

* Inventory analysis * Baseball Analytics



The Miracle of Perfect Forecasting
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“I have maybe one good swing in me...”

Game of Numbers Game of Strategy




When Reason Defies Numbers
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What is Artificial Intelligence?

e The theory and development of computer systems able to perform
tasks that normally require human intelligence, such as visual
perception, speech recognition, decision-making, and translation
between languages.

* Many philosophical and intellectual debates on what constitutes
“intelligence”.

* Deep Blue was smart enough to defeat the greatest Chess Master on
the planet. However, Deep Blue is not smart enough to want to flee a
burning building, or to request another chess match...



Famous Al Applications

e Alexa’s Speech Recognition
* Waymo’s self-driving cars
* Google’s translations

* Deep Blue trounces Kasparov

* DeepMind’s defeat of world’s
top GO player




Example Al Predictions for
Water Management

Surface Water Quality (i.e., algae blooms)

Groundwater Quality (i.e., saltwater
intrusion)

Groundwater Elevations

Surface Water Elevations

Surface Water Flows

Water Demand

Water Distribution System Modeling

Optimizing Groundwater Pumping to
Minimize Risk, Maximize Supply, Minimize
Costs

Optimize Water Distribution System
Operations




Development of Artificial Intelligence and Deep Learning
with Artificial Neural Networks

Artificial Intelligence

Machine Learning

Deep Learning Any technique that
enables computers
to mimic human
intelligence, using
logic, if-then rules,
decision trees, and
machine learning
(including deep
learning)

A subset of Al that

The subset of machine learning includes abstruse
composed of algorithms that permit statistical techniques
software to train itself to perform tasks, that enable machines

like speech and image recognition, by to improve at tasks
exposing multilayered neural networks to with experience. The

vast amounts of data. category includes

deep learning




Early Premonition of Al

* Mary Shelly in her 1818 classic
horror story Frankenstein not
only tapped a nerve in her times |
regarding artificially created
beings, but gave early
premonition to fears present
today.




Present Day Fear of Al

Eminent physicist Stephen Hawkings
considered it perhaps the greatest threat to
humanity:

“The development of full artificial intelligence could
spell the end of the human race.”

Tesla founder and techy billionaire Elon Musk:

“If you're not concerned about Al safety, you should
be. Vastly more risk than North Korea.”

Charlie Chaplin in his 1936 movie “Modern
Times” presciently foresaw the intrusion
into and even the domination of intelligent
machines on our lives.



Al Dream versus Al Reality

HAL from 2001 and Space Odyssey Forrest Gump in the Military
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| think you know what the
problem is just as well as | do

.

“Thank you for telling me the TRUTH. “GUMP! What’s your sole purpose in this army!?”
Dr. Chandler, will | dream?” “To do whatever you tell me DRILL SARGENT!”



John McCarthy’s Bold Prediction

* In ten years, computers would
be able to create better art than
any human beings.

e Better than DaVinci, Mozart,
Shakespeare...

“There are more things in heaven and
earth, Horatio, Than are dreamt of in your
philosophy.” Hamlet.



Alan Turing

Father of Al

Accomplishments

Famously known for breaking the Nazi’s
vaunted secret code Enigma

The “father” of modern computer
programming.

In 1950, introduced the term “machine
learning” and the “Turing Test” for
determininghequivalence of a computing
machine to human intelligence in his
landmark paper “Computing Machinery
and Intelligence.”

Turing focused on digital machines, not
“clones”.



Deep Neural Network
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Al Divided into Two Competing Schools

Connectionist View — Artificial Neural

Symbolic Logic View — Expert Networks

Systems Mimic the brain structure of neurons
“If then” logic with rules and synapses via hodes and trar_msfer
to try and replicate the Z0 jzo — functions.
thlnkmg process Of axon from a neuron WoZo

humans.

cell body f (Z i b)
- Z W;; + b f i &
- output axon
activation

Wo X9 function



History and Trajectory of Brain-like Computing —
Artificial Neural Networks (ANN)

Artificial Neural Network — Mathematical
Paradigms of Brain-Like Computer

The new paradigm of computing
mathematics consists of the
combination of such artificial
neurons into some artificial
neuron net.

Brain-like computer —

is a mathematical model of humane-brain
principles of computations. This computer consists
of those elements which can be called the
biological neuron prototypes, which are
interconnected by direct links called connections
and which cooperate to perform parallel
distributed processing (PDP) in order to solve a
desired computational task.




Al Winter

* In their famous/infamous 1969 book Perceptrons, Marvin Minsky
and Seymour Papert presented mathematical proofs that the current
single-layered artificial neural networks could not solve non-linear
problems.

* Al government funding dried up almost overnight.



Artificial Neural Network Resurgence

* The Backpropagation Algorithm solved mathematical
objections by enabling training of neural networks with
one or two hidden layers.

* “Deep Learning” which uses the same neural network
structure and algorithms, but with more hidden layers,
increases complex modeling capability.

* Enormous data sets and more powerful computing
capability ushered in this era.
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Renaissance of Artificial Neural Networks

"Non-deep" feedforward Deep neural network
neural network

hidden laver . hidden layer 1  hidden layer 2 hidden layer 3
N input layer

input laver —
- output laver -
output laver
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What Supercharged Al & Deep Learning?

* Large high quality data sets.
* Massive computer power.

* Software platforms.

* Robust optimizers.

* Acceptance in many disciplines and public awareness/acceptance.

Source: Andrew L Beam
https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_partl.html



Like dogs — ANNs excel at tasks for which they are
PROPERLY developed/tralned
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Still, like a dog, we must be careful
how we train the ANN

(a) Husky classifiod as woll (b) Explasation

Figure 11: Raw data and explanation of a bad
model's prediction In the “Husky vs Wolf™ task.

Hetarw Alter

Trusted the bad model WWout of 27 3 out of 27
Snow as a potentinl feature 12 out of 27 25 out of 27

Table 2: “Husky vs Wolf™ experiment results.



Questions before Embarking on Al

* What are your modeling goals?

* Are they realistic?
* Problem tractable?
* Do you understand the governing dynamics/how to model?
 Sufficient data for model development?
 Sufficient data for model validation?
* Can the model be implemented?
» Will decision makers/potential users/consumers accept it?



Fundamental Understanding of
Governing System Dynamics

e General physics

* Important variables Dynamic System )
utputs
. Random Input Final Monthly
* Spatial factors e b Groundwaer
Elevations
¢ Te m p ord I fa Cto 'S Controlled Input A t of
- mount o
Pumping Rates Water Supplied

* Data availability
» Surrogate variables



Artificial Neural Networks in Water Resources

» Data collection and control systems (e.g. SCADA) are becoming extremely common.

* Real-time collection of climate conditions, system state variables (e.g. water
levels, water quality, etc.), and control variables (e.g. pumping rates).

Temperature

* Conflicting interests, degradation, and diminishment requires improved
management of increasingly scarce water resources.
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* Wellfields, water distribution systems, watersheds, reservoirs, remediation systems,
etc., can be instrumented and managed in real time using ANNs.

Property of NOAH Holdings, LLC



On the Inherent Difficulty of
Modeling Fluid Flow Problems
The Physics of Baseball, 3 Edition, Harper-

Collins Publishers ’ ’ " "'"

h
o '
Author: Dr. Robert Adair, Sterling Professor N ' }‘r,'
Emeritus Yale University . \ ‘
\. ' . M
1{£is

“There are two unsolved problems
that interest me. The first is the
unified theory [which describes the
basic structure and formation of the
universe]; the second is why does a L) fa

baseball curve? | believe that in my
el

lifetime, we may solve the first, but |
THAT AIN'T NO OPTICAL ILLUSION, HE WARNS

.
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despair of the second.”

Quote attributed to unnamed
prominent physicist.




First Proof of Concept in Groundwater
Toms River, New Jersey Wellfield

Develop ANN models as surrogate of much larger numerical flow
model.

ANN equations predict groundwater level responses to pumping
and weather stresses at locations of interest.



ANN-Optimization Approach

Reduces the number of physical equations by orders of
magnitude (from almost 80,000 to less than 50).

Conducting simulations of different scenarios is orders of
magnitude faster with ANN approach, and thus can consider
many different scenarios.

Performing formal decision-making methodology is much
more efficient and is less susceptible to identification of
erroneous/infeasible solutions.

ANN serves as a “meta-model” for the much more
mathematically dense and difficult to solve numerical model.

A more accurate predictor model will result in more accurate
optimization solutions.



Al Prediction and Multi-Objective
Optimization

reading for our times. Dan Fagin handles topics of great complexity
with the dexterity of a scholar, the honesty of a journalist,
and the dramatic skill of a novelist.”

—Siddhartha Mukherjee, M.D., author of
the Pulitzer Prize-winning The Emperor of All Maladies

RIV.ER..

DAN FAGIN

Paper Published, Journal of Ground Water, 45, no 1: 53-61, 2007, Coppola and others, Multiobjective
Analysis of a Public Wellfield Using Artificial Neural Networks.



A ten million dollar epidemiological study conducted over six years
found a statistically significant correlation between incidence of
leukemia in young girls and exposure to contaminated drinking water

from municipal supply wells.
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Groundwater Contamination Plume Impacted Water
Supply
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Plume, Wellfield, and Simulated Ground-Water
Flow Lines Demonstrating Risk of Wells to
Contamination.




Management Problem

Former supply wells located inside of plume area now used to
“capture” contamination and protect nearby clean supply wells.

However, during high water demand periods, higher pumping of the
clean supply wells can “capture” contaminated water, and in fact
have shown presence of contamination during these higher risk
periods.

The New Jersey Geological Survey developed a numerical ground-
water flow model (MODFLOW) to simulate movement of the
groundwater contaminant plume under variable pumping and
weather conditions.

Goal is to find optimal pumping rates of supply wells that balance
the conflicting objectives of maximizing water supply while
minimizing the risk of contamination.



Model Grid Domain Vicinity of Plume and Wells
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MODFLOW Simulation Data
for ANN Model Development

5 years of monthly groundwater recharge values

Randomly generated monthly pumping rates, ranging from
0 to 1,000 gpm, pumping rates are independent.

MODFLOW run for 30,720 consecutive monthly stress
periods using random and controlled inputs. Each month
numerically simulated 2,560 times.

Half (1,280) used for training.

Developed a single ANN model for each month, and
coupled the twelve ANN monthly models together to
simulate a complete one year horizon.



Summary of Dynamic Nature of Toms River Groundwater System &

Linked ANN Predictive Accuracy

Groundwater elevations across the model over
the various stress periods ranged from
approximately -10.0 to 40.0 feet (above mean
sea level).

Mean monthly change in groundwater
elevations at all nodes is 2.3 feet.

Maximum monthly change in a groundwater
elevation is 30.6 feet.

Maximum mean monthly change in o
groundwater elevations for a single location is
5.7 feet.

Of the 384 mean head values, 247 estimated bK
the ANN during validation matched exactly wit
the MODFLOW values, 136 differed by only 0.1
feet, and the remaining one differed by 0.2 feet.

The mean absolute error is 0.1 feet.
The maximum error is 0.98 feet.

Node 10

Head (feet)

L \—

345678 9101112
Month

—e— MOD Alpha 1
—m— CNN Alpha 1
MOD Alpha .5
CNN Alpha .5
—x— MOD Alpha 0
—e— CNN Alpha 0
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Optimal Solution with Water Supply Weight = 0.4 and Risk = 0.6
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First Al Ground-Water Level Prediction for Real-

World System
Tampa Bay, FL

- Over-pumping of the groundwater system has resulted in severe
environmental impacts, including streamflow depletions, drying of

wetlands and swamps, land subsidence, etc.

- Tampa Bay Water utility must meet groundwater level targets bi-

weekly or face regulatory fines.

- Need a more accurate ground-water level prediction model based

upon climate and pumping conditions.



Groundwater Elevation Predictions
Tampa, Florida

* Predicting groundwater elevations in both an unconfined sediment
aquifer and a semi-confined limestone aquifer in response to variable
pumping and weather conditions.

* Perform sensitivity analysis to identify the relative importance of
different input variables on groundwater elevations.



Tampa Bay Hydrogeology

i
Unconfined aquifer
unconsolidated
sediments

Semiconfininglayer ||| 00

. . , , Artificial Neural Network
Paper published, Journal of Hydrologic Engineering Approach for Predicting Transient

Volume 8, No. 6, November/December 2003, Coppola Water Levels in a Multilayered

and others Groundwater System under
Variable State, Pumping, and
Climate Conditions



Tampa Bay Water ANN Data

* 5 years of data consisting of ground-water levels, pumping rates, and
weather variables, with water levels usually measured (MANUALLY)

on a weekly frequency.

* Input variables were initial ground-water levels in 12 monitoring
wells, pumping extractions of 7 municipal wells, precipitation,

temperature, wind speed, dew point, and stress period length.

e QOutput variables were ground-water levels at 12 monitoring wells at

the end of each stress period, varying from 3 to 24 days.




Predictive Performance Assessment

calibrated numerical groundwater flow model
(MODFLOW) developed by utility consultants.

Compare ANN performance against extensively [

Compare against measured water levels

Mean absolute error of ANN over validation period
was 0.5 feet.

Mean absolute error of MODFLOW over same
period was 2.5 feet.
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SENSITIVITY ANALYSIS
Semi-Confined Aquifer
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Possible Applications in Southwest U.S.

* Water resources are diminishing
and over-stressed

* Population is growing

* Climate change is introducing
uncertainty and probably reducing

runoff Al TR ;
'. iBh o W14, §§¢§§.nw\z #
 More accurate models needed for “Does Arizona have enough water?

predicting surface water conditions Let's do the math
like flows and stage as well as - =
groundwater elevations in
response to variable weather and
human use conditions.




ANN and Optimization

Use the Al models to perform any
number of simulations for different
scenarios.

Integrate the Al simulation/prediction
models with formal optimization to
identify optimal solutions for different
conditions.

Perform stochastic optimization when
uncertainty is included.

Perform multi-objective optimization
where the trade-off curve among
conflicting objectives is delineated.

Component1: Data Collection System and ANN
Prediction Model Development

ollect kKeal

d State,
> Weather, & Control Variables

Preprocess Data

Develop/Redevelop ANNs I =

Conduct Sensitivity Analysis e 4

Component 2: ANN-Prediction/Optimization
Management Tool Implementation
ormulate Optimizatio
Management Problem

Patented NOAH System



San Pedro River Basin

* Develop Al models to predict
groundwater elevations and
surface water flows.

Investigations
Network

e Use historical weather and water
use data.

e Use historical groundwater and
surface water data.

e Use satellite data.




Discussion & Questions
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