When the Turbines Stop Turning: Examining the Impacts of Drought on Power Production at Hoover Dam and Its Consequences for Entities in Arizona

By
Surabhi Karambelkar
PhD Student, University of Arizona

SUSTAINABILITY

U.S. Droughts Will Be the Worst in 1,000 Years

The Southwest and central Great Plains will dry out even more than previously thought

Image credit- Scientific American By Mark Fischetti on February 12, 2015 📮 23

National

Western drought steals clean energy along with fresh water at power plants

 □ Save for Later ■ Reading List Α

The white band of calcium along the canyon walls of the Hoover Dam shows how far the water level has fallen. (Bonnie Jo Mount/Washington Post)

By Todd C. Frankel April 26, 2015 Follow @tcfrankel

Most Read

Octopus slips out of aquarium tank, crawls across floor, escapes down pipe to ocean

Police discover massive backyard tunnel filled with stolen guns, golf clubs and electronics

\$250 million, 300 scientists and 40 labs: Sean Parker's revolutionary project to 'solve' cancer

CDC confirms Zika virus causes microcephaly, other birth defects

Secretive Harvard club breaks silence to say that admitting women could increase sexual misconduct

Aim of the Study

- 1. Review the potential impact of drought on power production at Hoover
- 2. Map the regulatory framework governing Hoover power allocation

3. Examine the consequences of power reduction at Hoover Dam for Arizona focusing on:

- how power cuts will be instituted in the state
- the entities/sectors that will be most at risk and the associated impacts of the same at a state-level

Structure of the Presentation

- Brief Background on Hoover Dam
- Drought and Hoover Power Production
- Regulatory Overview of Hoover Power Allocation
- Findings on the Implications of Hoover Power Reduction
- Way forward

- Brief Background on Hoover Dam
- Drought and Hoover Power Production
- Regulatory Overview of Hoover Power Allocation
- Findings on the Implications of Hoover Power Reduction
- Way forward

Background on Hoover Dam

 Power Marketed by Western Area Power Administration Statelevel power allocation:

• California: 56%

• Nevada: 25%

Arizona: 19%

- Brief Background on Hoover Dam
- Drought and Hoover Power Production
- Regulatory Overview of Hoover Power Allocation
- Findings on the Implications of Hoover Power Reduction
- Way forward

Drought and Hoover Power

- Lake Mead Elevation
 - 1999 → 1221 feet
 - September 2016 → 1075.23 feet
- Every Foot Drop in Lake Mead
 - Reduction of roughly 5.7MW of Power Generation Capacity
 - This number will be higher as Lake elevation drops
- Hoover Currently Operating at 1560 MW→ 25% reduction in capacity so far

- Brief Background on Hoover Dam
- Drought and Hoover Power Production
- Regulatory Overview of Hoover Power Allocation
- Findings on the Implications of Hoover Power Reduction
- Way forward

Federal Regulations Governing Hoover Power Allocation

Boulder Canyon Project Act 1928

Secretary of Interior Signed first set of contracts for 50 years

Federal Power Act 1920

• "preference power"

Hoover Power Plant Act 1984

- Schedule A: existing users
- Schedule B: users of power generated through uprating
- Schedule C: excess power→ Arizona preference

Hoover Power Allocation Act 2011

- Governs power allocation Post 2017
- Created Schedule D power: 5% of the total power generation capacity → 5% cut to Schedule A and B users

Federal Regulations Governing Hoover Power Allocation: Implications for Users

- Pre 2017
 - Power Cuts: "the ratio that the sum of the quantities of firm energy to which each contactor is entitled pursuant to said schedules bears to 4527.001 million kilowatthours"
- Post 2017
 - In case of non-availability of water: power cuts proportional to existing allotment

State Regulations Governing Hoover Power Allocation

Title 30- Power

- Section 30-124: Authorizes payment of surcharge for payment of structures on Colorado
- Section 30-125: Preference to districts and city/municipal uses in case of power deficit

Title 45- Water

 Section 45-1703 (C): recognizes the authority of APA to allocate the power generated through the uprating program at Hoover Dam

- Brief Background on Hoover Dam
- Drought and Hoover Power Production
- Regulatory Overview of Hoover Power Allocation
- Findings on the Implications of Hoover Power Reduction
- Way forward

Broader Impacts

- Cost of hydropower is extremely low > revenues only have to cover the operating costs of Hoover Dam and Power plant
- Power users have to pay O&M costs regardless of power received
- With lower lake elevations cost of power will increase

Broader Impacts

Impacts on the Central Arizona Project

- Main use of Hoover Power for CAP > match the load generation requirement at CAP's pumping stations on demand
- Losing inexpensive power will increase price of water → even a 1 cent per kWh increase in CAP's electricity costs would increase the cost of each AF of water by 3.5%
- Additional purchases will be necessary on the spot market

Historical and Projected Power Purchase Costs

Source- Galardi Rothstein Group, 2016 "Bond Feasibility Study Water Delivery Operation and Maintenance, Revenue Bonds, Series 2016 for CAWCD"

Loss of Revenue for Central Arizona Project

- 3 Key Sources of Revenue for Central Arizona Water Conservation District:
 - surplus revenues in the Lower Colorado River Basin Development Fund
 - ad valorem taxes
 - M&I capital charges
- Section 102 (c) of the Hoover Power Act 1984→stipulated the addition of 4.5 mills per kilowatthour in the rates charged to Hoover power users in Arizona
- 2015 Strategic Reserve deficit → \$ 54 million
- Lower electricity/water use will add to CAP's structural deficit

Impacts on Irrigation Districts

- Require purchasing power at higher market rates

 Specifically for Irrigation Districts that are not linked to Electrical Districts
- •Shift to groundwater pumping in Districts with lower profit margins —> Impact on groundwater
- Potential fallowing/ non-production

- Brief Background on Hoover Dam
- Drought and Hoover Power Production
- Regulatory Overview of Hoover Power Allocation
- Findings on the Implications of Hoover Power Reduction
- Way forward

Way Forward

Policy Options

- Creating flexibility in regulatory structures to manage power through a formal pool within the State
 - Southwest Public Power Agency Inc.
- Western Region Grid Integration
 - Western Interconnection Flexibility Assessment published in December 2015
- Technical Upgrades

Way Forward

Research Directions

- Quantification of economic impacts due to changing water/ energy costs for agriculture, municipal uses, etc.)
- Assessment of the effectiveness of peak-hour regulation (for water and energy)
- Examination of Hoover Power contracts to identify
 - potential barriers/openings to pooling power
 - potential barriers/openings to store water long term in Lake Mead
- Examination of how the Drought Contingency Plan will change the relationship of hydropower with other uses
- Examination of similar issues in the Upper Basin at Glen Canyon-Hydropower more severely impacted

Acknowledgements

• This work has been possible due to the immense support and countless hours spent by Dr. Megdal and individuals at CAP, Bureau of Reclamation, Maricopa-Stanfield Irrigation and Drainage District, Phoenix Water Services, and Electrical District No. 3 in answering the barrage of questions that I directed at them.

Questions?

Surabhi Karambelkar The University of Arizona email: surabhik@email.arizona.edu cell: 520-599-3740