RECLANATION Managing Water in the West

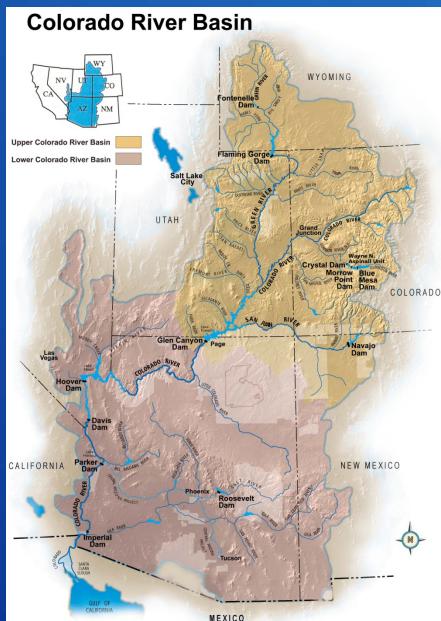
Colorado River Management under Uncertainty

Terry Fulp Deputy Regional Director Lower Colorado Region

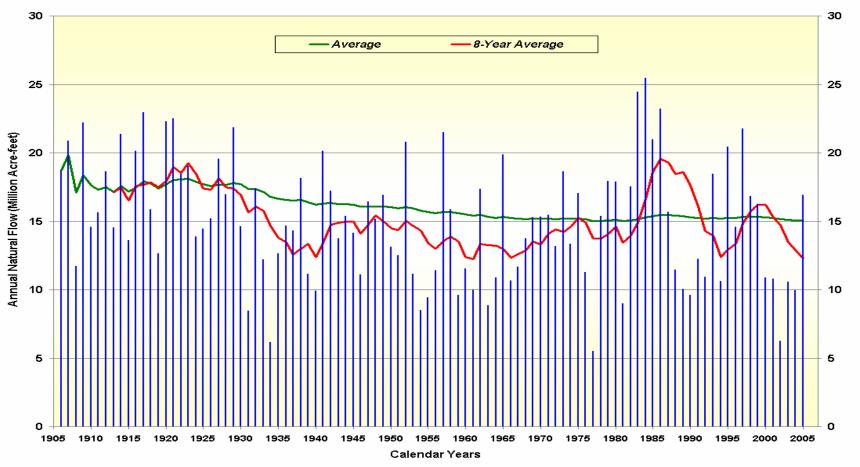
WRRC Annual Meeting June 24, 2008

U.S. Department of the Interior Bureau of Reclamation

Colorado River Management under Uncertainty


- Overview of Colorado River Basin
- Decision-making under Uncertainty
 - Interim Guidelines for the Operation of Lake Powell and Lake Mead

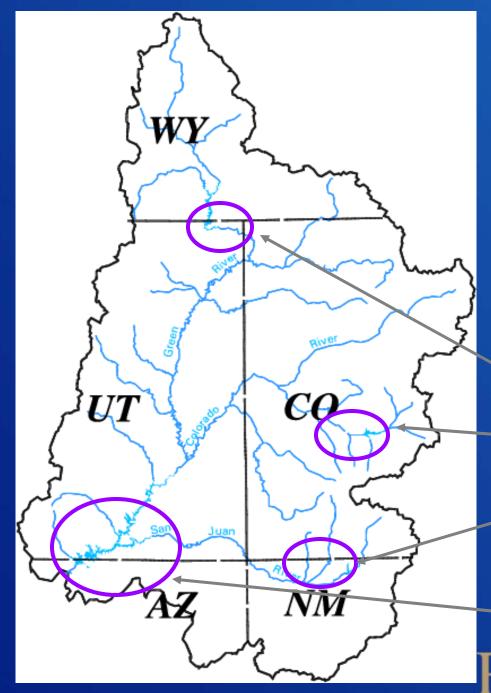
RECLAMATIC


Future Needs and Directions

Colorado River Basin Hydrology

- 16.5 million acre-feet (maf) allocated annually
- 13 to 14.5 maf of consumptive use annually
- 60 maf of storage
- 15.1 maf average annual
 "natural" inflow into Lake Powell over past 100 years
- Inflows are highly variable year-to-year

Natural Flow Colorado River at Lees Ferry Gaging Station, Arizona Calendar Year 1906 to 2005


ECLAM

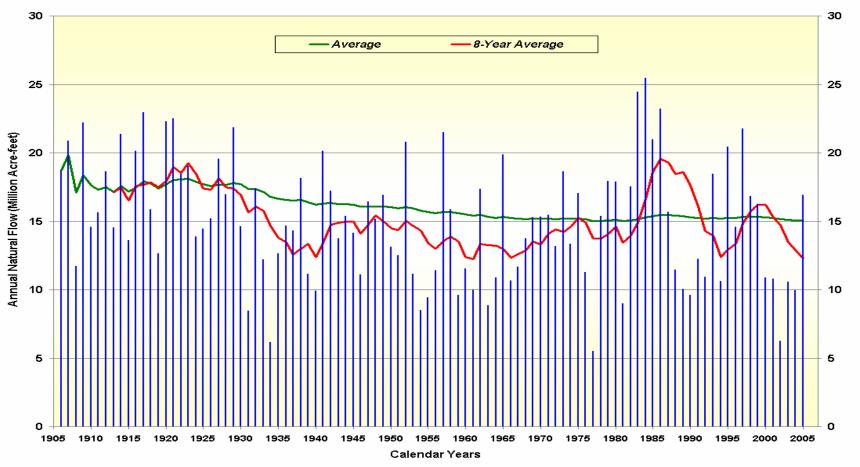
Provisional data, subject to change

Colorado River Basin Storage (as of June 15, 2008)

Current Storage	Percent Full	MAF	Elevation (Feet)
Lake Powell	58%	14.14	3623
Lake Mead	46%	12.03	1106
Total System Storage	57%*	33.77	NA

*Total system storage was 33.81 maf or 57% this time last year <u>
RECLAMATIO</u>

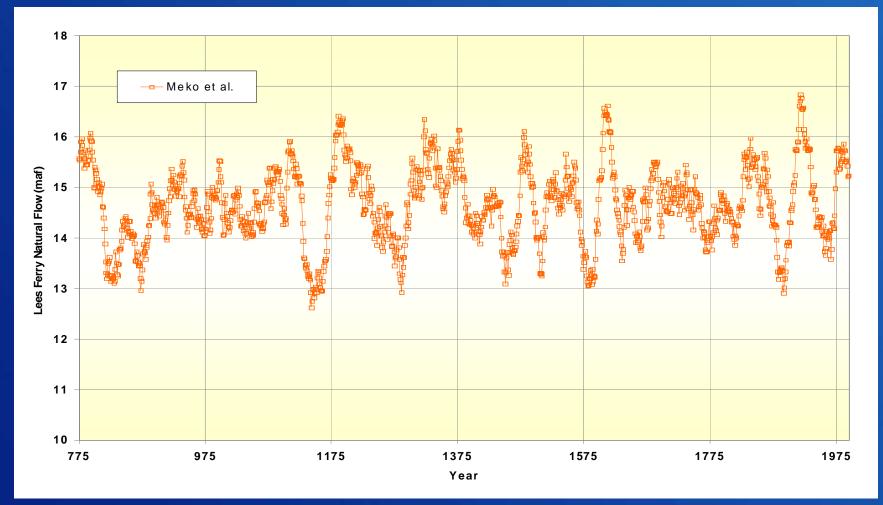
2008 Upper Colorado Projected Apr–Jul Inflow (mid-month June forecast)


Flaming Gorge – 66% Blue Mesa -156%Navajo – 127% Lake Powell – 113% CLAMA

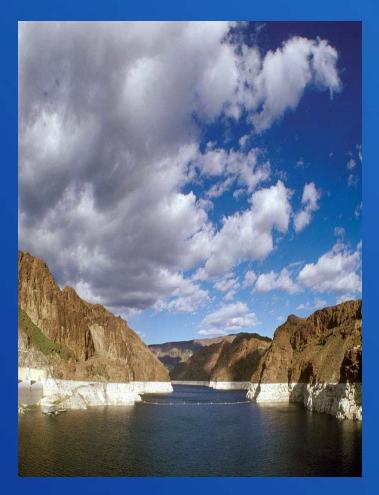
State of the System (1999-2008)

WY	Unregulated inflow into Powell % of Average	Powell and Mead Storage, maf	Powell and Mead % Capacity	
1999	109	47.59	95	
2000	62	43.38	86	
2001	59	39.01	78	
2002	25	31.56	63	
2003	52	27.73	55	
2004	49	23.11	46	
2005	104	27.24	54	
2006	72	25.80	51	
2007	68	24.43	49	
*2008	106	27.38	55	

*Based on June 24 Month Study and June mid-month inflow forecast **RECLAMATION**


Natural Flow Colorado River at Lees Ferry Gaging Station, Arizona Calendar Year 1906 to 2005

ECLAM


Provisional data, subject to change

Annual Natural Flow at Lees Ferry Tree-ring Reconstruction (Meko et al., 2007) 25-Year Running Mean

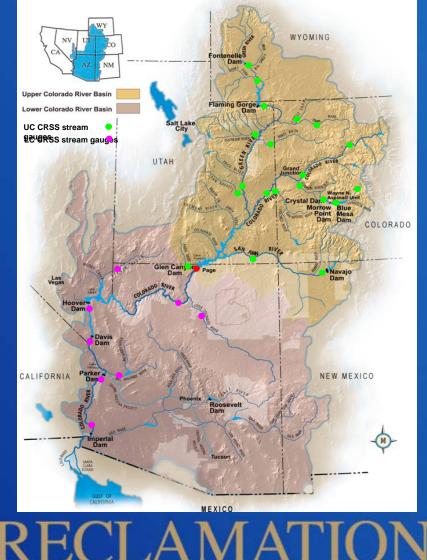
Interim Guidelines for the Operation of Lake Powell and Lake Mead

- Specifies a coordinated operation for the full operating range of Lake Powell and Lake Mead in order to better balance the water supply between the two basins
- Encourages more efficient and flexible use of Colorado River water in the Lower Basin by providing a "market-driven" mechanism for water conservation and transfers
- Implements a strategy for shortages in the Lower Basin, including a provision for additional shortages if warranted
- In place for an interim period (through 2026) to gain valuable operational experience

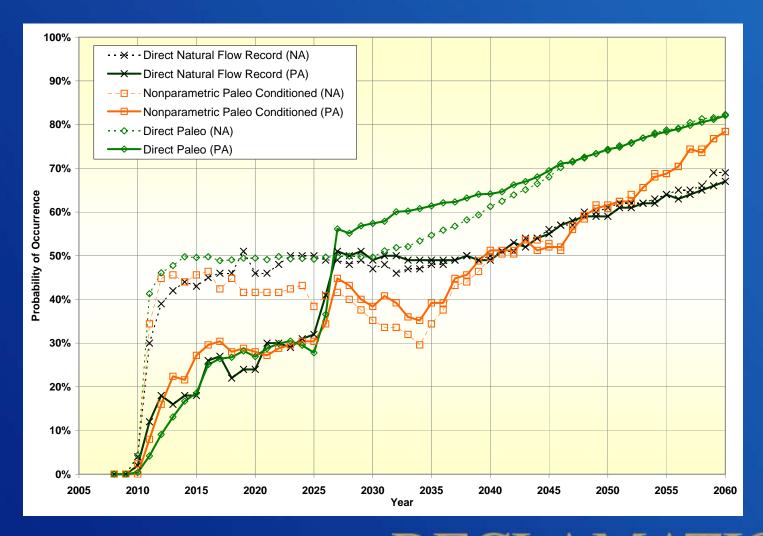
Lake Powell & Lake Mead Operational Diagrams

Lake Powell Elevation (feet)	Lake Powell Operational Tiers	Lake Powell Storage (maf)	Lake Mead Elevation (feet)	Lake Mead	Lake Mead Storage (maf)
3,700	Equalization Tier Equalize, Avoid Spills	24.3	1,220	Flood Control or 70R Surplus	25.9
3,636 - 3,666 (2008-2026)	Upper Elevation	15.5 - 19.3 (2008-2026)	1,200	Domestic Surplus	22.9
3,595	Balancing Tier ¹ Release 8.23 maf; if Lake Mead < 1,075 feet, balance contents with	11.3	1,145	Normal Operations	15.9
3,575	a min/max release of 7.0 and 9.0 maf	9.5	1,125 1,100		13.9 11.5
3,560	Mid-Elevation Release Tier Release 7.48 maf;	8.3	1,075	Shortage 333 kaf ^z	9.4
3,525	if Lake Mead < 1,025 feet, release 8.23 maf	5.9	1,050	Shortage 417kaf⁴	7.5 5.8
3,490	Lower Elevation Balancing Tier Balance contents with a min/max release of 7.0 and 9.5 maf	4.0	1,000	Shortage 500 kaf ^z and Consultation ³	4.3
3,370		o	895		o

¹ Subject to April adjustments that may result in balancing releases or releases according to the Equalization Tier.


² These are amounts of shortage (i.e., reduced deliveries in the United States).

³ If Lake Mead falls below elevation 1,025 ft msl, the Department will initiate efforts to develop additional guidelines for shortages at lower Lake Mead elevations.


Decision-making Under Uncertainty Interim Guidelines

- Multi-faceted research and development program begun in 2004
- Formation of work group of climate scientists to inform our EIS process – report published in EIS (Appendix U) and will be made available stand-alone
- Risk due to increasing climate variability analyzed in the EIS leading to this decision

Colorado River Basin

Probability of Lower Basin Shortages Comparison of Future Inflow Methodologies

Major Conclusions from Colorado River Climate Technical Work Group

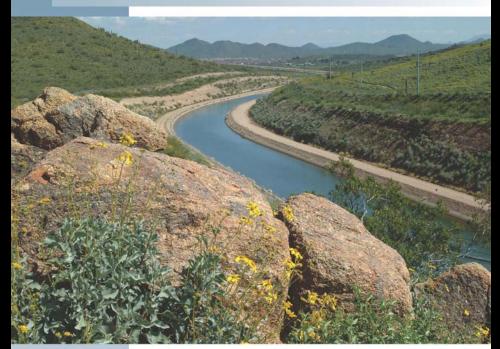
- Methodologies likely dependent upon time horizon of the decision
 - Climate variability potentially more important in the 10 to 20 year time frame than climate change
- For the 10 to 20 year time frame
 - "Condition" flows at Lee's Ferry based on projections of climate indicators (i.e., AMO, PDO)
- For the 20+ year time frame
 - Model climate scenarios to generate temperature and precipitation on global scale

RECLAMATIC

"Downscale" information to regional scale to drive runoff models

Decision-making Under Uncertainty Next Steps

- Continued Research and Development
- The bottom line
 - Better quantification of uncertainties and improved understanding of risks
 - Better decision-making under uncertainty



Colorado River Management Under Uncertainty

For further information: http://www.usbr.gov/lc/region

THE UNIVERSITY OF ARIZONA.

Water Resources Research Center College of Agriculture and Life Sciences

The Importance of the Colorado River to Arizona's Future

